autocython
Release 1.1

Mar 24, 2018






Contents

Introduction
Installation
Example usage
Limitations

Module reference

11







autocython, Release 1.1

Chris Billington, Mar 24, 2018

e [ntroduction
e Installation
* Example usage

e Limitations

e Module reference

View on PyPI | View on BitBucket | Read the docs

Contents 1


mailto:chrisjbillington@gmail.com
http://pypi.python.org/pypi/autocython
https://bitbucket.org/cbillington/autocython
http://autocython.readthedocs.org

autocython, Release 1.1

2 Contents



CHAPTER 1

Introduction

Like pyx_import, but when you want to write your own setup.py still, and you want to keep the compiled extensions
in the package directory.

“How is that at all like pyx_import?”’ I hear you ask. “Why would I want that?”.

Well, autocython records a hash of the .pyx files and the resulting .so or .pyd files whenever it compiles
anything, and recompiles automatically (by running your setup . py) if it detects that there is a mismatch. So that’s
how it’s like pyx_import.

The similarities end there. As mentioned, you have to write your own setup.py. I don’t see this as much of a
drawback, it’s rare that I have a Cython extension that doesn’t need at least some customisation, and that customisation
might as well go in a separate file than in a call to pyx_import. See the example below for how to write a setup.py
that works with autocython.

autocython expects you to keep all the compiled extensions in the same directory, even for different versions of
Python and platforms. Whilst keeping multiple versions of extensions for different platforms in the same directory
is easy in Python 3 (since extensions get a platform-specific suffix), it is less easy in Python 2. So autocython
provides a platform-specific suffix that you can add to the names of your extensions in your setup . py (see example
below), and an import function that uses the same suffix to import the right version at run time. This allows distributing
fat packages with all the supported compiled versions of the extension in the same folder. Whilst it is bad practice to
distribute packages like this, it is often what is most convenient if you’re a research group doing numerical simulations
or lab control systems and sharing code with each other without wanting to think too hard about packaging or build
servers.

But perhaps most importantly, aut ocython serves as a reminder to myself as to the current state of compiling cython
extensions on all platform. It calls your setup.py as: python setup.py build_ext --inplace, or on
Windows as python setup.py build_ext —--inplace —--compiler=msvc. So long as your setup.
py imports setuptools, on Windows this means you actually get a meaningful error about where to download
the correct compiler from Microsoft. Even if you get these steps wrong, aut ocython prints a big fat error message
describing what you need to make sure you’ve done, which I intend to update whenever the state of Windows compiling
changes.

Note: As of March 2018, the compilers needed on Windows are available at: Python 2.7: http://aka.ms/vcpython27.



http://aka.ms/vcpython27

autocython, Release 1.1

Python 3.5+:”Microsoft Visual C++ Build Tools”, from http://aka.ms/BuildTools

4 Chapter 1. Introduction


http://aka.ms/BuildTools

CHAPTER 2

Installation

to install autocython, run:

’$ pip3 install autocython

or to install from source:

’$ python3 setup.py install

Note: Works with Python 2.7 or Python 3.4+




autocython, Release 1.1

6 Chapter 2. Installation



CHAPTER 3

Example usage

Below is an example of how to use autocython in a package. All recompilation is triggered by imports.

Note: You can also check and trigger recompilation by running python -m autocython in the directory con-
taining the .pyx files and your setup.py. This can be a more convenient way to compile for a specific platform
than having to actually run the program doing the imports.

This example has a top-level script example.py which imports the hello function from a package
hello_package:

# example.py

from hello_package import hello
hello ()

That package’s ___init__ .py imports the hello function from a Cython extension hello_module.pyx using
autocython, after ensuring all extensions in the folder are up to date:

# hello_package/_ _init___ .py

import os

from autocython import ensure_extensions_compiled, import_extension
this_folder = os.path.dirname (os.path.abspath(__file ))
ensure_extensions_compiled(this_folder)

hello_module = import_extension('hello package.hello_module')

hello = hello_module.hello

Note that it is important that the import line given to import_extension () is a fully qualified, absolute import.
If you are only using Python 3, import_extension () is unnecessary and you can just use a normal import line
(though you should still use import_extension () if your code needs to run on both Python 2 and 3)

The Cython extension in the package is:




autocython, Release 1.1

# hello_package/hello_module.pyx

def hello():
print ('hello from cython!")

And the package directory also contains the setup . py for compiling the extension:

# hello_package/setup.py

from setuptools import setup
from setuptools.extension import Extension
from Cython.Distutils import build_ext

from autocython import PLATFORM_SUFFIX

ext_modules = [Extension("hello_module" + PLATFORM_SUFFIX, ["hello_module.pyx"])]
setup (

name = "hello_package",

cmdclass = {"build_ext": build_ext},

ext_modules = ext_modules,

Use of setuptools is crucial on Windows, otherwise compilation will not be able to find the Microsoft compilers.
Importing PLATFORM_SUFFIX and appending it to the extension name allows each version of the extension to have
a platform- specific unique name on Python 2 (import_extension () makes sure it gets the right one at import
time). If you are only using Python 3, you don’t need to add this suffix, but you still should if your code needs to run
on both Pytohn 2 and 3 (in Python 3 PLATFORM SUFFIX is just an empty string)

The result of all this is:

$ python example.py

Extension(s) out of date, recompiling...
<compilation output>

hello from cython!

$ python example.py # again, no compilation output this time:
hello from cython!

$ python3 example.py # different Python version:
Extension(s) out of date, recompiling...
<compilation output>

hello from cython!

$ python example.py # original Python again, still no recompilation neccesary:
hello from cython!

$ 1s hello_package/ # See what files have been generated:

autocython_compile_state. json hello_module.pyx __pycache_
hello_module.cpython-36m-x86_64-linux-gnu.so __init___ .py setup.py
hello_module_py27_linux2_64bit.so __init___.pyc

8 Chapter 3. Example usage




CHAPTER 4

Limitations

Note: The following limitation only applies to Python 2.

When importing an extension from a package, provided that the package’s __init__ .py uses
import_extension (), then the extension will be available for ordinary import. That is, in the above
example, if example.py had instead imported the hello function with the line:

from hello_package.hello_module import hello
hello ()

everything would have still been fine. However, importing extensions in the following way does not in general work
with autocython:

import hello_package.hello_module
hello_package.hello_module.hello ()

This may fail with AttributeError: 'module' object has no attribute 'hello_module',
since even though the import succeeded, Python thinks that hello_package.hello_module is getting an
attribute from the hello_package, as opposed to being the name of a submodule. This is a side effect of
import_extension () renaming the extension module after import to remove PLATFORM _SUFFIX.

The workaround, as done in the above example, is to ensure that hello_module is an attribute of
hello_package, by making the import line in your package’s ___init__ .py look like:

hello_module = import_extension('hello_package.hello_module')

with the extension module assigned to a variable with the same name as the extension module itself. If you do this then
importers will be able to import the extension module or its members using any of the different forms of the import
statement.




autocython, Release 1.1

10 Chapter 4. Limitations



CHAPTER B

Module reference

The public API comprises two functions and a constant:

autocython.ensure_extensions_compiled (folder, names=None)

Ensure the Cython extensions in the given folder with the given list of names are compiled, and if not (or
if they are in need of recompilation), compile them by running setup.py (assumed to be in the same
folder). If no names are given, they will be inferred from any .pyx files in the folder. It is assumed
that each cython file is called <name>.pyx, and that each extension (as specified in setup.py) is called
<name><PLATFORM_SUFFIX>, where PLATFORM _SUFFIX is aconstant defined in this module that spec-
ifies the platform details for Python 2, allowing import_extension () to import the correct version of the
extension if multiple versions exist for different platforms. In Python 3 PLATFORM SUFFIX is the empty
string since Python 3 does a similar thing automatically.

autocython.import_extension (fullname)
Import the extension, after appending PLATFORM_SUFFIX in order to ensure we get the right version for our
platform. This is not neccesary on Python 3, which does a similar thing automatically if you use an ordinary
import (On Python 3 PLATFORM _SUFFIX is an empty string). fullname must be a fully qualified, absolute
import. This function also inserts the module into sys.modules under the name fullname, and hence it will
be available for ordinary import without this function, so long as this function is called once first (say in the
__init__ .py of the package)

autocython.PLATFORM SUFFIX
A platform-specific string that should be appended to extension names in setup . py (see above example) in or-
der to make them uniquely named on a per- platform basis in Python 2. On Python 3 this is the empty string. On
Python 2 it is b'_py27_{}_{}'.format (sys.platform, platform.architecture() [0]),
leading to extensions with names like hello_module_py27_linux2_64bit.so

11



autocython, Release 1.1

12 Chapter 5. Module reference



Index

E

ensure_extensions_compiled() (in module autocython),
11

import_extension() (in module autocython), 11

P

PLATFORM_SUFFIX (autocython attribute), 11

13



	Introduction
	Installation
	Example usage
	Limitations
	Module reference

